This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262629 #9 Oct 17 2015 17:41:06 %S A262629 1,111,11111,1111111,1001111111001,1001001111111001001, %T A262629 111110010011111110010011111,111111110010011111110010011111111, %U A262629 100111111110010011111110010011111111001,1011010011111111001001111111001001111111100101101 %N A262629 Minimal nested base-2 palindromic primes with seed 1. %C A262629 Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s. %H A262629 Clark Kimberling, <a href="/A262629/b262629.txt">Table of n, a(n) for n = 1..300</a> %e A262629 a(5) = 1001111111001 = A117697(20) is the least base-2 prime having a(4) = 1111111 = A117697(8) in its middle. Triangular format: %e A262629 1 %e A262629 111 %e A262629 11111 %e A262629 1111111 %e A262629 1001111111001 %e A262629 1001001111111001001 %e A262629 111110010011111110010011111 %t A262629 s = {1}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &]; %t A262629 AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262629 *) %t A262629 Map[FromDigits[ToString[#], base] &, s] (* A262630 *) %t A262629 (* _Peter J. C. Moses_, Sep 01 2015 *) %Y A262629 Cf. A261881 (base 10), A262627. Subsequence of A117697 (expect a(1)). %K A262629 nonn,base %O A262629 1,2 %A A262629 _Clark Kimberling_, Oct 02 2015