A262627
Minimal nested base-2 palindromic primes with seed 0.
Original entry on oeis.org
0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
Offset: 1
a(3) = 11001010011 =A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
0
101
11001010011
101100101001101
10101011001010011010101
111010101100101001101010111
1111101010110010100110101011111
-
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262639
Minimal nested palindromic base-4 primes with seed 3; see Comments.
Original entry on oeis.org
3, 131, 11311, 121131121, 1212113112121, 312121131121213, 101312121131121213101, 11131013121211311212131013111, 31311131013121211311212131013111313, 1011313111310131212113112121310131113131101, 310113131113101312121131121213101311131311013
Offset: 1
a(3) = 11311 is the least base-4 prime having a(2) = 131 in its middle.
Triangular format:
3
131
11311
121131121
1212113112121
312121131121213
-
s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262639 *)
Map[FromDigits[ToString[#], base] &, s] (* A262640 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262642
Base-10 representation of 1 and the primes at A262641.
Original entry on oeis.org
1, 31, 2659, 28921, 20254277, 222258347161, 6703502508238897, 2849796577598550571, 163260594826469315359, 78587320839900014133983, 63082726980138277941240209, 28861909227691304085982177103, 17774573388934687063056536849453
Offset: 1
n A262641(n) base-10 representation
1 1 1
2 111 31
3 41114 2659
-
s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262639 *)
Map[FromDigits[ToString[#], base] &, s] (* A262640 *)
(* Peter J. C. Moses, Sep 01 2015 *)
Showing 1-3 of 3 results.
Comments