A262627
Minimal nested base-2 palindromic primes with seed 0.
Original entry on oeis.org
0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
Offset: 1
a(3) = 11001010011 =A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
0
101
11001010011
101100101001101
10101011001010011010101
111010101100101001101010111
1111101010110010100110101011111
-
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262645
Minimal nested palindromic base-6 primes with seed 0; see Comments.
Original entry on oeis.org
0, 101, 5110115, 13511011531, 1135110115311, 111351101153111, 152111351101153111251, 5215211135110115311125125, 1025215211135110115311125125201, 1431025215211135110115311125125201341, 1111431025215211135110115311125125201341111
Offset: 1
a(3) = 5110115 is the least base-6 prime having a(2) = 101 in its middle.
Triangular format:
0
101
5110115
13511011531
1135110115311
111351101153111
-
s = {0}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262645 *)
Map[FromDigits[ToString[#], base] &, s] (* A262646 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262648
Base-10 representation of 0 and the primes at A262647.
Original entry on oeis.org
1, 43, 55987, 102792517, 95125388731, 3981385394034229, 27783887681061330839, 7141162170983023407421, 40050387387887393264626841, 400599026018424027699693461857, 2500775549161597801615214316269999, 35465901730059327498617881373769591811
Offset: 1
n A262647(n) base-10 representation
1 1 1
2 111 43
3 1111111 55987
-
s = {1}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262645 *)
Map[FromDigits[ToString[#], base] &, s] (* A262646 *)
(* Peter J. C. Moses, Sep 01 2015 *)
Showing 1-3 of 3 results.
Comments