cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262667 Expansion of Product_{k>=1} (1+x^k)^k / (1-x^k).

This page as a plain text file.
%I A262667 #12 Oct 03 2015 03:41:53
%S A262667 1,2,5,12,25,52,103,198,370,680,1221,2158,3757,6448,10931,18322,30382,
%T A262667 49894,81206,131044,209818,333466,526294,825182,1285807,1991754,
%U A262667 3068074,4700910,7166216,10871534,16416358,24679224,36943232,55075758,81785488,120989244
%N A262667 Expansion of Product_{k>=1} (1+x^k)^k / (1-x^k).
%C A262667 Convolution of A026007 and A000041.
%H A262667 Vaclav Kotesovec, <a href="/A262667/b262667.txt">Table of n, a(n) for n = 0..2000</a>
%H A262667 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015
%F A262667 a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Pi^2 * n^(1/3)/(2^(2/3) * 3^(4/3) * Zeta(3)^(1/3)) - Pi^4 / (324*Zeta(3))) * Zeta(3)^(1/3) / (2^(17/12) * 3^(1/6) * Pi * n^(5/6)).
%t A262667 nmax = 40; CoefficientList[Series[Product[(1+x^k)^k/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A262667 Cf. A026007, A000041, A262803.
%K A262667 nonn
%O A262667 0,2
%A A262667 _Vaclav Kotesovec_, Oct 03 2015