cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262670 Consider the Farey sequence of order n, F_n, and that the average distance between any two adjacent pairs in F_n is 1/A002088(n). Then a(n) is the number of adjacent pairs whose difference is the average.

Original entry on oeis.org

0, 1, 2, 0, 2, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 2, 4, 2, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Nov 09 2015

Keywords

Comments

Because the Farey fractions are symmetrical about 1/2 for n > 1, a(n) is always even.
First occurrence of k by index, or -1 if no such occurrence exists: 0, 1, 2, -1, 60, -1, 64, -1, 207, -1, 1047, -1, 1084, -1, ..., .
Where 0 occurs: 0, 3, 7, 8, 10, 12, 13, 14, 17, 20, 22, 23, 26, 28, 30, 32, 33, ..., ;
Where 2 occurs: 2, 4, 5, 6, 9, 11, 15, 16, 18, 19, 21, 24, 25, 27, 29, 31, 36, 37, 38, ..., ;
Where 4 occurs: 60, 68, 120, 129, 148, 158, 159, 168, 180, 216, 225, 231, 239, 241, 249, ..., ;
Where 6 occurs: 65, 227, 401, 403, 492, 600, 616, 780, 861, 862, 865, 967, 1019, 1054, ..., ;
Where 8 occurs: 208, 1210, 1367, 1803, 1804, 1841, 1866, 2397, 2864, 3281, 3443, 3724, ..., ;
Where 10 occurs: 1048, 1094, 1632, 1949, 2269, 2571, 2710, 3365, 3555, 3558, 3613, 3939, ..., ;
Where 12 occurs: 1085, 1358, 2541, 3251, 4411, ..., ;
Where 18 occurs: 4830, ..., ;
For the first 5001 terms: 3315 zeros, 1 one, 1138 twos, 414 fours, 96 sixes, 19 eights, 12 tens, 5 twelves and 1 eighteen.

Examples

			a(5) = 2. F_5 = {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1} and the first forward difference is {1/5, 1/20, 1/12, 1/15, 1/10, 1/10, 1/15, 1/12, 1/20, 1/5}. The average distance is 1/10 since A002088(5) = 10 which is also the number of adjacent pairs, a/b & c/d.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Chapter XVI, "Farey Tails", Dover Books, NY, 1966, pgs 168-172.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{diff = Differences@ Union@ Flatten@ Table[a/b, {b, n}, {a, 0, b}], ave = 1/Sum[ EulerPhi[ m], {m, n}]}, {Length@ Select[diff, ave < # &], Length@ Select[diff, ave == # &], Length@ Select[diff, ave > # &]}]; Array[f, 65]