This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262671 #14 Aug 26 2016 16:55:01 %S A262671 1,6,42,335,2956,28468,296540 %N A262671 Number of pointed multiset partitions of normal pointed multisets of weight n. %C A262671 A pointed multiset k[1...k...n] with point k is normal if its entries [1...k...n] span an initial interval of positive integers. Pointed multiset partitions are triangles (or compositions) in the multiorder of pointed multisets. %H A262671 Gus Wiseman, <a href="https://docs.google.com/document/d/1m0s6DGTBkDW9gvMuFmJHvy6oLGRAbQ7okAZcOPZawp0/pub">Comcategories and Multiorders</a> %e A262671 The a(2) = 6 pointed multiset partitions are: %e A262671 1[1[11]],1[1[1]1[1]], %e A262671 1[1[12]],1[1[1]2[2]], %e A262671 2[2[12]],2[1[1]2[2]]. %e A262671 The a(3) = 42 pointed multiset partitions are: %e A262671 1[1[111]],1[1[1]1[11]],1[1[11]1[1]],1[1[1]1[1]1[1]], %e A262671 1[1[122]],1[1[1]2[22]],1[1[12]2[2]],1[1[1]2[2]2[2]], %e A262671 2[2[122]],2[1[1]2[22]],2[1[12]2[2]],2[2[2]2[12]],2[2[12]2[2]],2[1[1]2[2]2[2]], %e A262671 1[1[112]],1[1[1]1[12]],1[1[1]2[12]],1[1[11]2[2]],1[1[12]1[1]],1[1[1]1[1]2[2]], %e A262671 2[2[112]],2[1[1]2[12]],2[1[11]2[2]],2[1[1]1[1]2[2]], %e A262671 1[1[123]],1[1[1]2[23]],1[1[1]3[23]],1[1[12]3[3]],1[1[13]2[2]],1[1[1]2[2]3[3]], %e A262671 2[2[123]],2[1[1]2[23]],2[1[13]2[2]],2[2[2]3[13]],2[2[12]3[3]],2[1[1]2[2]3[3]], %e A262671 3[3[123]],3[1[1]3[23]],3[1[12]3[3]],3[2[2]3[13]],3[2[12]3[3]],3[1[1]2[2]3[3]]. %t A262671 ReplaceListRepeated[forms_List, rerules_List] := %t A262671 Union[Flatten[ %t A262671 FixedPointList[ %t A262671 Function[preforms, %t A262671 Union[Flatten[ReplaceList[#, rerules] & /@ preforms, 1]]], %t A262671 forms], 1]] %t A262671 pointedPartitions[JIX[r_, b_List?OrderedQ]] /; MemberQ[b, r] := %t A262671 Cases[ReplaceListRepeated[{Z[Y[JIX[r, {r}]], %t A262671 Y @@ DeleteCases[b, r, 1, 1]]}, {Z[Y[sof___, JIX[w_, t_]], %t A262671 Y[for___, x_, aft___]] /; OrderedQ[{w, x}] :> %t A262671 Z[Y[sof, JIX[w, t], JIX[x, {x}]], Y[for, aft]], %t A262671 Z[Y[JIX[w_, t_], soa___], Y[for___, x_, aft___]] /; %t A262671 OrderedQ[{x, w}] :> %t A262671 Z[Y[JIX[x, {x}], JIX[w, t], soa], Y[for, aft]], %t A262671 Z[Y[sof___, JIX[w_, {tof__}]], Y[for___, x_, aft___]] :> %t A262671 Z[Y[sof, JIX[w, Sort[{tof, x}]]], Y[for, aft]], %t A262671 Z[Y[JIX[w_, {tof__}], soa___], Y[for___, x_, aft___]] :> %t A262671 Z[Y[JIX[w, Sort[{tof, x}]], soa], Y[for, aft]]}], %t A262671 Z[Y[pts__], Y[]] :> JIX[r, {pts}]]; %t A262671 allnormpms[n_Integer] := %t A262671 Join @@ Function[s, %t A262671 JIX[#, Array[Count[s, y_ /; y <= #] + 1 &, n]] & /@ %t A262671 Range[Length[s] + 1]] /@ Subsets[Range[n - 1] + 1]; %t A262671 Join @@ pointedPartitions /@ allnormpms[3] /. %t A262671 JIX -> Apply(* to construct the example *) %t A262671 Array[Plus @@ (Length[pointedPartitions[#]] & /@ %t A262671 allnormpms[#]) &, 7](* to compute the sequence *) %Y A262671 Cf. A185298, A080108, A276024. %K A262671 nonn,more %O A262671 1,2 %A A262671 _Gus Wiseman_, Sep 26 2015