This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262704 #44 Sep 08 2022 08:46:14 %S A262704 1,0,1,0,6,1,0,6,24,1,0,0,114,60,1,0,0,180,690,120,1,0,0,90,2940,2640, %T A262704 210,1,0,0,0,5670,21840,7770,336,1,0,0,0,5040,87570,107520,19236,504, %U A262704 1,0,0,0,1680,189000,735210,407400,42084,720,1,0,0,0,0,224700,2835756,4280850,1284360,83880,990,1 %N A262704 Triangle: Newton expansion of C(n,m)^3, read by rows. %C A262704 Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m). %C A262704 Equivalently, lower triangular matrix T_3 such that %C A262704 || C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3. %C A262704 T_3(n,m) = 0 for n < m and for 3*m < n. In fact: %C A262704 C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q. %C A262704 Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0. %C A262704 Example: %C A262704 C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6); %C A262704 C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5). %C A262704 So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row. %C A262704 T_1 is the unitary matrix, %C A262704 T_2 is the transpose of A109983, %C A262704 T_3 is this sequence, %C A262704 T_4, T_5 are A262705, A262706. %H A262704 Gheorghe Coserea, <a href="/A262704/b262704.txt">Rows n = 0..200, flattened</a> %H A262704 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arxiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004. %F A262704 T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3. %F A262704 Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n). %e A262704 Triangle starts: %e A262704 n\m [0] [1] [2] [3] [4] [5] [6] [7] [8] %e A262704 [0] 1; %e A262704 [1] 0, 1; %e A262704 [2] 0, 6, 1; %e A262704 [3] 0, 6, 24, 1; %e A262704 [4] 0, 0, 114, 60, 1; %e A262704 [5] 0, 0, 180, 690, 120, 1; %e A262704 [6] 0, 0, 90, 2940, 2640, 210, 1; %e A262704 [7] 0, 0, 0, 5670, 21840, 7770, 336, 1; %e A262704 [8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1; %e A262704 [9] ... %t A262704 T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 01 2015 *) %o A262704 (MuPAD) %o A262704 // as a function %o A262704 T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n): %o A262704 // as a matrix h x h %o A262704 _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]): %o A262704 _P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]): %o A262704 _T_3:=h->_P(h)^-1*_P_3(h): %o A262704 (PARI) T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ _Colin Barker_, Oct 01 2015 %o A262704 (Magma) [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // _Bruno Berselli_, Oct 01 2015 %o A262704 (PARI) t3(n,m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3); %o A262704 concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ _Gheorghe Coserea_, Jul 14 2016 %Y A262704 Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172). %Y A262704 Column sums are the A126086, per the comment given thereto by _Brendan McKay_. %Y A262704 Second diagonal (T_3(n+1,n)) is A007531 (n+2). %Y A262704 Column T_3(n,2) is A122193(3,n). %Y A262704 Cf. A109983 (transpose of), A262705, A262706. %Y A262704 Cf. A078739, A078741, A274786. %K A262704 nonn,tabl,easy %O A262704 0,5 %A A262704 _Giuliano Cabrele_, Sep 27 2015