cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262708 a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.

This page as a plain text file.
%I A262708 #111 Jan 05 2025 19:51:40
%S A262708 8,10,14,18,18,24,28,30,38,40,44,48,54,58,60,68,70,74,78,84,88,98,100,
%T A262708 104,108,108,114,128,130,138,138,148,150,158,164,168,174,178,180,190,
%U A262708 194,198,198,210,224,228,228,234,238,240,250,258,264,268,270,278,280
%N A262708 a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.
%C A262708 The sequence lists Fibonacci indices q that are conjectured to produce Fibonacci numbers divisible by p^2, where p is a Fibonacci-Wieferich prime.
%D A262708 Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag, 2000.
%D A262708 Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover. (See p. 73.)
%H A262708 U. Alfred, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/1-1/alfred2.pdf">On the form of primitive factors of Fibonacci numbers</a>, Volume 1, Fibonacci Quarterly, vol 1 (1963), page 1.
%H A262708 Andreas-Stephan Elsenhans, <a href="http://www.uni-math.gwdg.de/tschinkel/gauss/Fibon.pdf">The Fibonacci sequence modulo p^2.</a>, pages 1-6.
%H A262708 Shane Findley, <a href="/A262708/a262708.txt">Discussion of Sequence A262708</a>.
%H A262708 Richard J. McIntosh and Eric L. Roettger, <a href="http://dx.doi.org/10.1090/S0025-5718-07-01955-2">A search for Fibonacci-Wieferich and Wolstenholme primes</a>, Mathematics of Computation, vol 76 (260), Oct 2007.
%H A262708 John Vinson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/1-2/vinson.pdf">The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence</a>, Fibonacci Quarterly, vol 1 (1963), pages 37-45.
%e A262708 For n=4, prime(4)=7, and a(4)=8.
%t A262708 Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* _Michael De Vlieger_, Oct 04 2015 *)
%o A262708 (PARI) lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ _Michel Marcus_, Sep 29 2015
%Y A262708 Cf. A001602, A051694.
%K A262708 nonn
%O A262708 4,1
%A A262708 _Shane Findley_, Sep 27 2015
%E A262708 Edited by _N. J. A. Sloane_, Sep 29 2015
%E A262708 Edited by _Jon E. Schoenfield_, Oct 09 2015