A262719 a(n) is the smallest nonnegative k such that there is no 3 X 3 matrix with entries in {1,...,n} whose determinant is k.
1, 6, 21, 55, 110, 203, 357, 544, 808, 1177, 1670, 2215, 2865, 3599, 4558, 5621, 6637, 8041, 9769, 11413, 13394, 15593, 17683, 20317, 23249, 26063, 29506, 33287, 37461, 41692, 46306, 50707, 55667, 61723, 67547, 73939, 80767, 87941, 94913, 101613, 111422
Offset: 1
Keywords
Examples
For n=1, the only matrix is the matrix of all 1s, which has determinant 0. Hence, a(1)=1.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..50
Programs
-
Python
from itertools import product, groupby, count def det(m): a, b, c, d, e, f, g, h, i = m return abs(a*(e*i-f*h)-b*(d*i-f*g)+c*(d*h-e*g)) def a262719(n): s = list(product(range(1, n+1), repeat=9)) i = 0 for k, ms in groupby(sorted(s, key=det), key=det): if k!=i: return i i += 1 return i
Extensions
a(7)-a(41) from Hiroaki Yamanouchi, Oct 17 2015