cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262723 Products of three distinct primes that form an arithmetic progression.

This page as a plain text file.
%I A262723 #17 Aug 27 2022 08:10:03
%S A262723 105,231,627,897,935,1581,1729,2465,2967,4123,4301,4715,5487,7685,
%T A262723 7881,9717,10707,11339,14993,16377,17353,20213,20915,23779,25327,
%U A262723 26331,26765,29341,29607,32021,33335,40587,40807,42911,48635,49321,54739,55581,55637,59563,60297,63017
%N A262723 Products of three distinct primes that form an arithmetic progression.
%C A262723 This sequence is subsequence of A046389, A088595, A187073, A203614 and A229094.
%C A262723 Obviously, the most repeated prime divisor for values of a(n) is 3. - _Altug Alkan_, Sep 30 2015
%C A262723 These are numbers 3(2k + 3)(4k + 3) where 2k + 3 and 4k + 3 are prime, together with numbers p(p - 6d)(p + 6d) where p, p - 6d, and p + 6d are prime. - _Charles R Greathouse IV_, Mar 16 2018
%H A262723 Charles R Greathouse IV, <a href="/A262723/b262723.txt">Table of n, a(n) for n = 1..10000</a>
%e A262723 627 is in this sequence because 627=3*11*19, and 3, 11, 19 form an arithmetic progression (11-3 = 19-11).
%t A262723 Select[Range@ 64000, And[SquareFreeQ@ #, PrimeOmega@ # == 3, Subtract @@ Differences[First /@ FactorInteger@ #] == 0] &] (* _Michael De Vlieger_, Sep 30 2015 *)
%o A262723 (PARI) for(i=2,10^5,if(issquarefree(i)&&omega(i)==3,f=factor(i);if(f[1, 1]+f[3, 1]==2*f[2,1],print1(i,", "))))
%o A262723 (PARI) list(lim)=my(v=List()); lim\=1; forstep(d=6,sqrtint(lim\10),6, forprime(p=d+5, solve(x=sqrtn(lim,3),d*sqrtn(lim,3), x^3-d^2*x-lim)+.5, if(isprime(p-d) && isprime(p+d), listput(v, p*(p-d)*(p+d))))); forprime(p=5,(sqrt(24*lim+81)-27)/12+3.5, if(isprime(2*p-3), listput(v,p*(2*p-3)*3))); Set(v) \\ _Charles R Greathouse IV_, Mar 16 2018
%Y A262723 Cf. A046389, A088595, A187073, A203614, A229094.
%K A262723 nonn
%O A262723 1,1
%A A262723 _Antonio Roldán_, Sep 28 2015
%E A262723 New name from _Peter Munn_, Aug 27 2022