This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262728 #11 Nov 07 2015 06:31:44 %S A262728 2,173,181,233,443,877,967,1373,1831,4001,4231,4663,8191,8753,9043, %T A262728 10333,10631,13537,14591,16931,18211,25411,32707,32843,33637,37573, %U A262728 54773,56167,63853,64513,78101,84131,100207,102667,106087,112571,113153,133087,149531 %N A262728 (2,3,5,7)-primes (see comments for precise definition). %C A262728 Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). %H A262728 Clark Kimberling, <a href="/A262728/b262728.txt">Table of n, a(n) for n = 1..1000</a> %e A262728 Consider the number a(2) = 173: %e A262728 in base 2, a(2) = 10101101, which is the prime 172; %e A262728 in base 3, 10101101 is the prime 2467; %e A262728 in base 5, 10101101 is the prime 81401; %e A262728 in base 7, 10101101 is the prime 840743 %t A262728 {b1, b2, b3, b4} = {2, 3, 5, 7}; z = 15000; %t A262728 u = Select[Prime[Range[z]], %t A262728 PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] && %t A262728 PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] && %t A262728 PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &] %t A262728 (* _Peter J. C. Moses_, Sep 27 2015 *) %Y A262728 Cf. A000040, A262729. %K A262728 nonn,easy,base %O A262728 1,1 %A A262728 _Clark Kimberling_, Oct 02 2015