cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262729 Strong (2,3,5,7)-primes. (See Comments for precise definition.)

Original entry on oeis.org

2, 171472673, 343808687, 1364225981, 1469999801, 1871684753, 2110769237, 2227044401, 2411201729, 2485782361, 2545607453, 3795488227, 3946237717, 4213334953, 4395443513, 5308651577, 5770033901, 5832097819, 6385775491, 6694883219, 7064806421, 7235208829
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2015

Keywords

Comments

Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). Call p a strong V-prime if p is a (b(j), ..., b(k))-prime for each of the tuples (b(j), ..., b(k)), for j = 1..k-1.
a(157) > 10^11. - Hiroaki Yamanouchi, Oct 25 2015

Examples

			Let p = 171472673. Confirmation that p is a strong (2,3,5,7)-prime follows.
Base-2 for p: u = (1,0,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0,1);
u in base 3 spells the prime 8488002487771;
u in base 5 spells the prime 7749195106457425001;
u is base 7 spells the prime 67054080721013093290423.
Base-3 for p: v = (1, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 0, 2);
v in base 5 spells the prime 838940251427;
v in base 7 spells the prime 243692337097757.
Base-5 for p: w = (3, 2, 2, 3, 4, 4, 1, 1, 1, 1, 4, 3);
w in base 7 spells the prime 6598716743.
		

Crossrefs

Programs

  • Mathematica
    {b1, b2, b3, b4} = {2, 3, 5, 7}; z = 10000000;
    Select[Prime[Range[z]],
    PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b4]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b3], b4]] &]
    (* Peter J. C. Moses, Sep 27 2015 *)

Extensions

a(4)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A262727 Strong (2,3,5)-primes (see comments).

Original entry on oeis.org

2, 7, 13, 41, 151, 173, 181, 223, 331, 641, 1373, 1759, 2011, 3061, 4507, 5867, 9601, 13537, 14533, 14591, 14821, 15101, 15161, 30557, 32707, 37657, 38653, 45361, 46687, 48463, 54331, 54773, 59197, 63853, 70321, 76031, 77041, 78101, 87133, 91541, 95083
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2015

Keywords

Comments

Let V = (b(1), b(2),...,b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). Call p a strong V-prime if p is a (b(j),...,b(k))-prime for each of the vectors (b(j),...,b(k)), for j = 1..k.

Crossrefs

Programs

  • Mathematica
    {b1, b2, b3} = {2, 3, 5}; z = 50000;
    u = Select[Prime[Range[z]],
    PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &]
    (* Peter J. C. Moses, Sep 27 2015 *)

A261967 {2,3,5}-primes. (See comments.)

Original entry on oeis.org

2, 151, 3061, 9517861, 11903341, 15344551, 15460771, 19975771, 37935091, 42234271, 52312411, 199938421, 228523501, 237049321, 270798991, 315266641, 315522931, 327445201, 354600601, 423223741, 466801171, 498309631, 499063711, 547916791, 585381361, 621504721
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2015

Keywords

Comments

Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for i = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k and j = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). Note that strong (2,3,5)-primes (A262727) form a proper subset of {2,3,5}-primes. It may be of interest to consider the sets of {2,3,5,7}-primes, {2,3,5,7,11}-primes, etc. Is every such set infinite?

Crossrefs

Programs

  • Mathematica
    {b1, b2, b3} = {2, 3, 5}; z = 10000000;
    Select[Prime[Range[z]],
    PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b3], b1]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b3], b2]] &]
    (* Peter J. C. Moses, Sep 27 2015 *)
Showing 1-3 of 3 results.