A262729 Strong (2,3,5,7)-primes. (See Comments for precise definition.)
2, 171472673, 343808687, 1364225981, 1469999801, 1871684753, 2110769237, 2227044401, 2411201729, 2485782361, 2545607453, 3795488227, 3946237717, 4213334953, 4395443513, 5308651577, 5770033901, 5832097819, 6385775491, 6694883219, 7064806421, 7235208829
Offset: 1
Examples
Let p = 171472673. Confirmation that p is a strong (2,3,5,7)-prime follows. Base-2 for p: u = (1,0,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0,1); u in base 3 spells the prime 8488002487771; u in base 5 spells the prime 7749195106457425001; u is base 7 spells the prime 67054080721013093290423. Base-3 for p: v = (1, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 0, 2); v in base 5 spells the prime 838940251427; v in base 7 spells the prime 243692337097757. Base-5 for p: w = (3, 2, 2, 3, 4, 4, 1, 1, 1, 1, 4, 3); w in base 7 spells the prime 6598716743.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..156
Programs
-
Mathematica
{b1, b2, b3, b4} = {2, 3, 5, 7}; z = 10000000; Select[Prime[Range[z]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] && PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] && PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] && PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] && PrimeQ[FromDigits[IntegerDigits[#, b2], b4]] && PrimeQ[FromDigits[IntegerDigits[#, b3], b4]] &] (* Peter J. C. Moses, Sep 27 2015 *)
Extensions
a(4)-a(22) from Hiroaki Yamanouchi, Oct 25 2015
Comments