This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262735 #17 Sep 23 2019 15:56:00 %S A262735 0,1,1,2,4,8,17,36,77,165,354,760,1632,3505,7528,16169,34729,74594, %T A262735 160220,344136,739169,1587660,3410133,7324621,15732546,33791920, %U A262735 72581632,155898017,334853200,719230865,1544835281,3318150210,7127051636,15308187336 %N A262735 Expansion of x*(1-x-x^2)/((1-x)*(1-x-2*x^2-x^3)). %H A262735 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-1,-1). %F A262735 G.f.: A(x) = x*(1-x-x^2)*B(x), where B is g.f. of A077864. %F A262735 a(n) = A077864(n+1)-2*A077864(n), n >= 0. %F A262735 a(n+3) = A077864(n+2)-A077864(n+1)-A077864(n), n >= 0. %F A262735 Recurrence: a(0)=0, a(1)=1, a(2)=1, a(3)=2, a(4)=4, a(5)=8, a(6)=17, and a(n) = 4*a(n-1)-4*a(n-2)+a(n-7) for n >= 7. %F A262735 Conjecture: a(n+1) = Sum_{j=0..n/2} A027907(n-j,2*j), n >= 0. %F A262735 a(n) = 2*a(n-1)+a(n-2)-a(n-3)-a(n-4) for n>3. - _Wesley Ivan Hurt_, Oct 10 2015 %F A262735 a(n) = a(n-1)+2*a(n-2)+a(n-3)-1, n>=3. - _R. J. Mathar_, Nov 07 2015 %p A262735 a:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif n=3 then 2 else 2*a(n-1)+a(n-2)-a(n-3)-a(n-4); fi; end: seq(f(n), n=0..50); # _Wesley Ivan Hurt_, Oct 10 2015 %t A262735 CoefficientList[Series[x (1 - x - x^2)/((1 - x) (1 - x - 2 x^2 - x^3)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Sep 29 2015 *) %t A262735 LinearRecurrence[{2,1,-1,-1},{0,1,1,2},40] (* _Harvey P. Dale_, Sep 23 2019 *) %o A262735 (PARI) concat(0, Vec(x*(1-x-x^2)/((1-x)*(1-x-2*x^2-x^3)) + O(x^50))) \\ _Michel Marcus_, Sep 29 2015 %Y A262735 Cf. A027907, A077864. %K A262735 nonn,easy %O A262735 0,4 %A A262735 _Werner Schulte_, Sep 29 2015