A282282 Remainder when sum of squares of the first n primes is divided by n-th square pyramidal number.
0, 3, 10, 27, 43, 13, 106, 7, 131, 87, 322, 177, 675, 137, 546, 1307, 691, 1496, 266, 1307, 2226, 3627, 902, 2487, 5021, 1585, 3446, 5487, 7276, 9245, 3426, 7275, 11887, 2495, 7546, 12203, 111, 5020, 10094, 16023, 22849, 3565, 10462, 16735, 23144, 28889, 2346, 12907, 23619, 33560, 43632, 6555, 14074, 24587
Offset: 1
Examples
a(3) = 10 because (2^2 + 3^2 + 5^2) mod (1^2 + 2^2 + 3^2) = 10.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Altug Alkan, Alternative Illustration of A282282
Programs
-
Mathematica
Table[Mod[Total[Prime[Range@ n]^2], Binomial[n + 2, 3] + Binomial[n + 1, 3]], {n, 54}] (* Michael De Vlieger, Feb 11 2017 *)
-
PARI
a(n) = sum(k=1, n, prime(k)^2) % (n*(n+1)*(2*n+1)/6);
Comments