This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262748 #19 Feb 23 2016 14:01:47 %S A262748 9,21,25,27,35,39,49,55,57,77,81,85,93,111,115,117,119,121,125,129, %T A262748 133,143,155,161,169,171,183,185,187,201,203,205,209,215,217,219,235, %U A262748 237,243,247,253,259,265,275,279,289,291,299,301,305,309,319,323,327,329,333 %N A262748 Composite odd numbers m such that q is not equal to -1 (mod p) for every pair p,q<m satisfying the following two conditions: p is a prime divisor of m, and if a prime divides q then it divides m. These are called present numbers. %C A262748 Present numbers are the only composite integers that may appear in the sequence A135506. Moreover, for every present number m there exists s such that if we replace x(1) with s in that sequence, then x(m) = m (see the link). The rest of the odd composite numbers are called absent numbers, which are sequence A262741. %H A262748 Serafín Ruiz-Cabello, <a href="http://arxiv.org/abs/1504.05041">On the use of the lowest common multiple to build a prime-generating recurrence</a>, arXiv:1504.05041 [math.CO], 2015. %o A262748 (Sage) %o A262748 def triangle(q, m): # This is the first auxiliary program %o A262748 if q >= m: %o A262748 return False %o A262748 Q = factor(q) %o A262748 for par in Q: %o A262748 if m % par[0] != 0: %o A262748 return False %o A262748 return True %o A262748 def pairs(m): # This is the second auxiliary program %o A262748 L = [] %o A262748 M = factor(m) %o A262748 for par in M: %o A262748 p = par[0] %o A262748 for q in range(p-1,m,p): %o A262748 if triangle(q, m): %o A262748 L.append((p, q)) %o A262748 return L %o A262748 def print_presents(n0, n): # This program gives a list with every present number in the interval [n0, n] %o A262748 L = [] %o A262748 m0 = n0+1-(n0%2) %o A262748 for m in range(m0,n+1,2): %o A262748 if not is_prime(m): %o A262748 if pairs(m) == []: %o A262748 L.append(m) %o A262748 return L %o A262748 # _Serafín Ruiz-Cabello_, Sep 30 2015 %Y A262748 Cf. A135506, A262741. %K A262748 nonn %O A262748 1,1 %A A262748 _Serafín Ruiz-Cabello_, Sep 30 2015