A262750 Least positive integer z such that n - phi(z^2) = x^2 + y^2 for some integers x and y with x*y*z even and phi(k^2) < n for all 0 < k < z, or 0 if no such z exists, where phi(.) is Euler's totient function given by A000010.
1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 2, 2, 4, 1, 2, 4, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 2, 2, 5, 1, 2, 6, 1, 2, 3, 2, 1, 1, 2, 4, 1, 1, 2, 4, 4, 1, 2, 4, 4, 1, 2, 2, 1, 1, 2, 5, 4, 3, 3, 2, 4, 1, 2, 6, 1, 1, 2, 8, 1, 2, 3, 4, 1, 1, 2, 2, 6, 3, 3, 4, 1, 1, 2, 2, 5, 1, 2, 4, 4, 1, 2, 2, 4, 6, 3, 8, 4, 1, 2, 2
Offset: 1
Keywords
Examples
a(68) = 8 since 68 - phi(8^2) = 68 - 32 = 36 = 0^2 + 6^2 with 0*6*8 even and all those phi(k^2) (k = 1,...,7) smaller than 68. a(5403) = 67 since 5403 - phi(67^2) = 5403 - 4422 = 981 = 9^2 + 30^2 with 9*30*67 even and all those phi(k^2) (k = 1,...,5403) smaller than 5403.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_]:=EulerPhi[n^2] SQ[n_]:=IntegerQ[Sqrt[n]] Do[Do[If[f[x]>n,Goto[aa]]; Do[If[SQ[n-f[x]-y^2]&&(Mod[x*y, 2]==0||Mod[n-f[x]-y^2, 2]==0),Print[n," ",x];Goto[bb]], {y, 0, Sqrt[(n-f[x])/2]}]; Continue, {x, 1, n}]; Label[aa];Print[n," ",0];Label[bb]; Continue, {n,1,100}]
Comments