A262753 Number of (n+2) X (2+2) 0..1 arrays with each row divisible by 5 and each column divisible by 7, read as a binary number with top and left being the most significant bits.
4, 9, 25, 100, 361, 1369, 5476, 21609, 85849, 343396, 1371241, 5480281, 21921124, 87665769, 350625625, 1402502500, 5609860201, 22439141209, 89756564836, 359025060969, 1436097847129, 5744391388516, 22977555967081, 91910204694361
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1....1..1..1..1....1..0..1..0....1..0..1..0....1..0..1..0 ..0..0..0..0....1..1..1..1....1..0..1..0....1..0..1..0....1..0..1..0 ..0..0..0..0....1..0..1..0....1..0..1..0....1..1..1..1....0..1..0..1 ..1..0..1..0....1..0..1..0....1..0..1..0....1..1..1..1....0..1..0..1 ..1..1..1..1....1..0..1..0....1..0..1..0....1..1..1..1....0..1..0..1 ..1..1..1..1....1..1..1..1....1..0..1..0....1..0..1..0....1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A262759.
Formula
Empirical: a(n) = 4*a(n-1) + 9*a(n-3) - 36*a(n-4) - 8*a(n-6) + 32*a(n-7).
Empirical g.f.: x*(4 - 7*x - 11*x^2 - 36*x^3 + 24*x^4 + 24*x^5 + 32*x^6) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 + x + x^2)*(1 + 2*x + 4*x^2)). - Colin Barker, Dec 31 2018