A262761 Number of (4+2)X(n+2) 0..1 arrays with each row divisible by 5 and each column divisible by 7, read as a binary number with top and left being the most significant bits.
10, 100, 319, 1645, 16450, 243220, 1614175, 15350125, 153501250, 1790228500, 15826009375, 157647278125, 1576472781250, 16543231412500, 159357016609375, 1592677865078125, 15926778650781250, 161625340977812500
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..0..1..1..1....1..1..1..1..0..0....0..0..1..1..1..1....1..0..0..0..1..1 ..1..1..1..1..0..0....1..0..1..0..0..0....0..0..1..1..1..1....0..0..1..1..1..1 ..1..1..0..1..1..1....0..0..0..0..0..0....0..0..0..1..0..1....1..0..0..0..1..1 ..1..1..1..1..0..0....0..0..0..0..0..0....0..1..0..1..0..0....0..0..1..1..1..1 ..1..1..0..1..1..1....0..1..0..1..0..0....0..1..0..1..0..0....1..0..0..0..1..1 ..1..1..1..1..0..0....1..1..1..1..0..0....0..1..1..1..1..0....0..0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262759.
Formula
Empirical: a(n) = 15*a(n-1) -75*a(n-2) +375*a(n-3) +2200*a(n-4) -51750*a(n-5) +258750*a(n-6) -1293750*a(n-7) +3016875*a(n-8) +19434375*a(n-9) -97171875*a(n-10) +485859375*a(n-11) -1589281250*a(n-12) -453750000*a(n-13) +2268750000*a(n-14) -11343750000*a(n-15) +37812500000*a(n-16)
Comments