cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262769 Integers k such that the concatenation of 2^k and k is prime.

This page as a plain text file.
%I A262769 #37 Jul 07 2024 01:32:15
%S A262769 3,23,63,261,281,291,4689,10641,11231,12519
%N A262769 Integers k such that the concatenation of 2^k and k is prime.
%C A262769 First three primes: 83, 838860823, 922337203685477580863.
%C A262769 a(11) > 120000. - _Giovanni Resta_, Apr 08 2016
%C A262769 a(11) > 160000. - _Michael S. Branicky_, Jul 06 2024
%e A262769 For k = 23 we have 2^23 and 23 equal to 8388608 and 23, respectively, and 838860823 is a prime number.
%t A262769 Select[Range@ 5000, PrimeQ[2^# * 10^IntegerLength[#] + #] &] (* _Giovanni Resta_, Apr 08 2016 *)
%o A262769 (Python)
%o A262769 from sympy import isprime
%o A262769 def afind(limit):
%o A262769   k, twok = 0, 1
%o A262769   while k <= limit:
%o A262769     if isprime(int(str(twok) + str(k))): print(k, end = ", ")
%o A262769     k, twok = k+1, twok*2
%o A262769 afind(2000) # _Michael S. Branicky_, Mar 23 2021
%o A262769 (PARI) isok(k) = isprime(eval(Str(2^k, k))); \\ _Michel Marcus_, Mar 23 2021
%Y A262769 Cf. A000079.
%K A262769 nonn,base,more
%O A262769 1,1
%A A262769 _Emre APARI_, Mar 24 2016
%E A262769 a(9)-a(10) from _Giovanni Resta_, Apr 08 2016
%E A262769 a(8) inserted by _Michael S. Branicky_, Jul 06 2024