This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262770 #34 Dec 15 2023 15:10:12 %S A262770 0,1,3,5,7,9,10,12,14,16,18,19,21,23,25,27,28,30,32,34,36,37,39,41,43, %T A262770 45,46,48,50,52,54,55,57,59,61,63,64,66,68,70,72,73,75,77,79,81,82,84, %U A262770 86,88,90,91,93,95,97,99,100,102,104,106,108,109,111,113,115,117,118,120,122,124,126,127,129,131,133,135,136,138,140,142,144,145,147,149,151,153,154,156,158,160,162,163,165,167,169,171,172,174,176,178,180,181,183,185,187,189,191 %N A262770 A Beatty sequence: a(n)=floor(n*p) where p=2*cos(Pi/7)=A160389. %C A262770 Beatty sequence of the shorter diagonal (A160389) in a regular heptagon with sidelength 1. %C A262770 Complement of Beatty sequence A262773 of the longer diagonal (A231187) in a regular heptagon with sidelength 1. %C A262770 First 106 terms agree with A187318, but A187318(106)=190 while A262770(106)=191. %H A262770 Peter Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden Fields: A Case for the Heptagon</a>, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997. %H A262770 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %t A262770 Table[Floor[2 n Cos[Pi/7]], {n, 0, 106}] (* _Michael De Vlieger_, Oct 05 2015 *) %o A262770 (Octave) p=roots([1,-1,-2,1])(1); a(n)=floor(p*n) %o A262770 (PARI) a(n) = floor(n*2*cos(Pi/7)); \\ _Michel Marcus_, Oct 05 2015 %Y A262770 Complement of A262773. %Y A262770 Initially agrees with A187318 (because 2*cos(Pi/7) is close to 9/5). %K A262770 nonn %O A262770 0,3 %A A262770 _Patrick D McLean_, Sep 30 2015