This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262773 #23 Dec 15 2023 15:10:00 %S A262773 0,2,4,6,8,11,13,15,17,20,22,24,26,29,31,33,35,38,40,42,44,47,49,51, %T A262773 53,56,58,60,62,65,67,69,71,74,76,78,80,83,85,87,89,92,94,96,98,101, %U A262773 103,105,107,110,112,114,116,119,121,123,125,128,130,132,134,137,139 %N A262773 A Beatty sequence: a(n)=floor(q*n) where q=A231187. %C A262773 Beatty sequence of the longer diagonal (A231187) in a regular heptagon with sidelength 1. %C A262773 Complement of Beatty sequence A262770 of the longer diagonal (A160389) in a regular heptagon with sidelength 1. %H A262773 Peter Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden Fields: A Case for the Heptagon</a>, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997 %H A262773 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %t A262773 Table[Floor[n/(2 Cos[3 Pi/7])], {n, 0, 106}] (* _Michael De Vlieger_, Oct 05 2015 *) %o A262773 (Octave) q=roots([1,-2,-1,1])(1); a(n)=floor(q*n) %o A262773 (PARI) a(n) = floor(n/(2*cos(3*Pi/7))) \\ _Michel Marcus_, Oct 05 2015 %Y A262773 Complement of A262770. %K A262773 nonn %O A262773 0,2 %A A262773 _Patrick D McLean_, Sep 30 2015