This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262832 #11 Nov 09 2015 16:22:51 %S A262832 2,11,13,41,151,173,181,191,223,233,241,313,331,421,443,463,541,563, %T A262832 641,701,733,743,953,1373,1451,1471,1483,1753,1783,1831,1993,2011, %U A262832 2143,2161,2351,2411,2693,3041,3061,3491,3571,3623,3761,3943,4051,4373,4643,4813 %N A262832 {2,5}-primes (defined in Comments). %C A262832 Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). %H A262832 Clark Kimberling, <a href="/A262832/b262832.txt">Table of n, a(n) for n = 1..1000</a> %t A262832 {b1, b2} = {2, 5}; %t A262832 u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235475 *) %t A262832 v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262831 *) %t A262832 w = Intersection[u, v]; (* A262832 *) %t A262832 (* _Peter J. C. Moses_, Sep 27 2015 *) %Y A262832 Cf. A000040, A262729, A235266, A262830. %K A262832 nonn,easy,base %O A262832 1,1 %A A262832 _Clark Kimberling_, Oct 31 2015