A262844 Number of (n+2) X (2+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.
6, 34, 132, 396, 1264, 3962, 11886, 35914, 108556, 325668, 976552, 2931922, 8795766, 26370674, 79104084, 237312252, 711756448, 2135076202, 6405228606, 19214238554, 57640739420, 172922218260, 518757049560, 1556255741762, 4668767225286
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..1..0....1..1..1..0....1..1..1..0....0..0..0..0....0..0..0..0 ..0..1..1..1....0..0..0..0....1..1..1..0....0..0..0..0....0..0..0..0 ..0..1..1..1....0..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0 ..1..1..1..0....1..1..1..0....0..1..1..1....1..1..1..0....1..1..1..0 ..0..0..0..0....1..1..1..0....0..0..0..0....0..1..1..1....0..0..0..0 ..0..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262849.
Programs
-
Mathematica
v = Select[Tuples[{0, 1}, 4], Mod[FromDigits[#, 2], 7] == 0 &]; a[n_] := a[n] = Length[Select[Tuples[v, n + 2], !AnyTrue[Transpose[#], Mod[FromDigits[#, 2], 7] == 0 &] &]]; Table[a[n], {n, 1, 10}] (* Robert P. P. McKone, Jun 09 2024 *)
Formula
Empirical: a(n) = 4*a(n-1) -4*a(n-2) +20*a(n-3) -68*a(n-4) +68*a(n-5) -162*a(n-6) +444*a(n-7) -444*a(n-8) +644*a(n-9) -1244*a(n-10) +1244*a(n-11) -1277*a(n-12) +1376*a(n-13) -1376*a(n-14) +1032*a(n-15).
Comments