cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262849 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.

This page as a plain text file.
%I A262849 #4 Oct 03 2015 16:11:21
%S A262849 6,6,13,12,34,27,318,196,132,54,900,3181,1336,396,109,4536,31050,
%T A262849 37635,5184,1264,219,34782,352880,771084,420654,31512,3962,438,178926,
%U A262849 4679725,17912392,14762016,3896365,175820,11886,877,1042284,58693450,481968171
%N A262849 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.
%C A262849 Table starts
%C A262849 ....6......6.......12........318..........900..........4536.........34782
%C A262849 ...13.....34......196.......3181........31050........352880.......4679725
%C A262849 ...27....132.....1336......37635.......771084......17912392.....481968171
%C A262849 ...54....396.....5184.....420654.....14762016.....661066920...35819485902
%C A262849 ..109...1264....31512....3896365....290338650...26232879096.2864161217701
%C A262849 ..219...3962...175820...39348387...5692555116.1007501698644
%C A262849 ..438..11886...793812..417279054.108936025308
%C A262849 ..877..35914..4140908.3999504445
%C A262849 .1755.108556.21744992
%C A262849 .3510.325668
%H A262849 R. H. Hardin, <a href="/A262849/b262849.txt">Table of n, a(n) for n = 1..70</a>
%F A262849 Empirical for column k:
%F A262849 k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4)
%F A262849 k=2: [order 15]
%F A262849 k=3: [order 43]
%F A262849 k=4: [order 29]
%F A262849 Empirical for row n:
%F A262849 n=1: [linear recurrence of order 16]
%e A262849 Some solutions for n=3 k=4
%e A262849 ..0..1..1..1..0..0....0..0..0..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0
%e A262849 ..0..0..0..1..1..1....1..1..1..0..0..0....0..1..1..1..0..0....1..1..1..1..1..1
%e A262849 ..0..0..1..1..1..0....0..1..0..1..0..1....1..1..0..0..0..1....1..0..0..0..1..1
%e A262849 ..0..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..0..0..1..1
%e A262849 ..1..1..1..1..1..1....0..1..0..1..0..1....1..1..1..0..0..0....1..0..0..0..1..1
%Y A262849 Column 1 is A033129(n+2).
%K A262849 nonn,tabl
%O A262849 1,1
%A A262849 _R. H. Hardin_, Oct 03 2015