cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262869 Number of squarefree numbers appearing among the smaller parts of the partitions of n into two parts.

This page as a plain text file.
%I A262869 #41 Nov 29 2022 09:42:11
%S A262869 0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,6,6,6,7,7,8,8,8,8,9,9,10,10,11,11,11,
%T A262869 11,12,12,12,12,13,13,13,13,14,14,15,15,16,16,16,16,16,16,17,17,17,17,
%U A262869 17,17,18,18,19,19,20,20,20,20,21,21,22,22,23,23
%N A262869 Number of squarefree numbers appearing among the smaller parts of the partitions of n into two parts.
%C A262869 Number of distinct rectangles with integer length and squarefree width such that L + W = n, W <= L. For example, a(14) = 6; the rectangles are 13 X 1, 12 X 2, 11 X 3, 9 X 5, 8 X 6, 7 X 7. - _Wesley Ivan Hurt_, Nov 04 2017
%H A262869 Charles R Greathouse IV, <a href="/A262869/b262869.txt">Table of n, a(n) for n = 1..10000</a>
%H A262869 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A262869 a(n) = Sum_{i=1..floor(n/2)} mu(i)^2, where mu is the Möebius function (A008683).
%F A262869 a(n) = A262991(n) - A262868(n).
%F A262869 a(n) = A013928(floor(n/2)+1). - _Georg Fischer_, Nov 29 2022
%e A262869 a(5)=2; there are two partitions of 5 into two parts: (4,1) and (3,2). Both of the smaller parts are squarefree, thus a(5)=2.
%e A262869 a(6)=3; there are three partitions of 6 into two parts: (5,1), (4,2) and (3,3). Among the three smaller parts, all are squarefree, thus a(6)=3.
%p A262869 with(numtheory): A262869:=n->add(mobius(i)^2, i=1..floor(n/2)): seq(A262869(n), n=1..100);
%t A262869 Table[Sum[MoebiusMu[i]^2, {i, Floor[n/2]}], {n, 100}]
%t A262869 Table[Count[IntegerPartitions[n,{2}][[All,2]],_?SquareFreeQ],{n,80}] (* _Harvey P. Dale_, Oct 17 2021 *)
%o A262869 (PARI) a(n) = sum(i=1, n\2, moebius(i)^2); \\ _Michel Marcus_, Oct 04 2015
%o A262869 (PARI) a(n)=my(s); n\=2; forsquarefree(k=1, sqrtint(n), s += n\k[1]^2*moebius(k)); s \\ _Charles R Greathouse IV_, Jan 08 2018
%Y A262869 Cf. A008683, A013928, A071068, A261985, A262351, A262868, A262870, A262871, A262991, A262992.
%K A262869 nonn,easy
%O A262869 1,4
%A A262869 _Wesley Ivan Hurt_, Oct 03 2015