cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262884 Expansion of Product_{k>=1} ((1+x^(3*k-1))*(1+x^(3*k-2)))^k.

This page as a plain text file.
%I A262884 #8 Oct 04 2015 11:47:33
%S A262884 1,1,1,1,2,4,4,7,9,11,16,23,31,40,53,71,91,121,161,206,264,343,441,
%T A262884 563,725,922,1166,1476,1869,2357,2967,3725,4659,5816,7263,9050,11241,
%U A262884 13947,17269,21333,26342,32479,39957,49094,60231,73775,90273,110333,134643
%N A262884 Expansion of Product_{k>=1} ((1+x^(3*k-1))*(1+x^(3*k-2)))^k.
%C A262884 Convolution of A262878 and A262879.
%H A262884 Vaclav Kotesovec, <a href="/A262884/b262884.txt">Table of n, a(n) for n = 0..2000</a>
%H A262884 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015
%F A262884 a(n) ~ exp(-Pi^4/(2592*Zeta(3)) + Pi^2 * n^(1/3) / (12*3^(2/3)*Zeta(3)^(1/3)) + 3^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2) * Zeta(3)^(1/6) / (2^(7/18) * 3^(2/3) * sqrt(Pi) * n^(2/3)).
%t A262884 nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A262884 Cf. A262878, A262879, A262883, A262924.
%K A262884 nonn
%O A262884 0,5
%A A262884 _Vaclav Kotesovec_, Oct 04 2015