A262912 Number of (n+1)X(3+1) 0..1 arrays with each row divisible by 3 and each column divisible by 7, read as a binary number with top and left being the most significant bits.
1, 6, 15, 53, 318, 1207, 5797, 34782, 189135, 1089701, 6538206, 38547751, 229660021, 1377960126, 8242589055, 49395098933, 296370593598, 1777250964247, 10661181588037, 63967089528222, 383764138693935, 2302493636842181
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..0..0....0..0..0..0....0..1..1..0....0..0..0..0....0..1..1..0 ..1..1..1..1....0..0..0..0....1..0..0..1....0..1..1..0....0..0..0..0 ..1..1..1..1....0..0..0..0....1..1..1..1....0..1..1..0....0..1..1..0 ..0..0..1..1....0..0..0..0....1..0..0..1....0..1..1..0....0..0..0..0 ..0..0..0..0....0..0..0..0....0..1..1..0....0..0..0..0....0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical formula for A262912
Crossrefs
Cf. A262917.
Formula
Empirical: a(n) = 8*a(n-1) -16*a(n-2) +104*a(n-3) -640*a(n-4) +1280*a(n-5) -3830*a(n-6) +15280*a(n-7) -30560*a(n-8) +58240*a(n-9) -99200*a(n-10) +198400*a(n-11) -283209*a(n-12) -115128*a(n-13) +230256*a(n-14) -345384*a(n-15).
Empirical formula verified: see link. - Robert Israel, Aug 12 2019
Comments