This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262917 #4 Oct 04 2015 10:13:40 %S A262917 1,1,2,1,3,3,1,6,5,5,1,11,15,9,10,1,22,33,53,27,19,1,43,99,137,318,61, %T A262917 37,1,86,261,853,1411,1207,145,74,1,171,783,2953,18190,7417,5797,435, %U A262917 147,1,342,2241,17333,121507,152587,51769,34782,1253,293,1,683,6723,71721 %N A262917 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row divisible by 3 and each column divisible by 7, read as a binary number with top and left being the most significant bits. %C A262917 Table starts %C A262917 ...1....1.......1........1...........1...........1............1...........1 %C A262917 ...2....3.......6.......11..........22..........43...........86.........171 %C A262917 ...3....5......15.......33..........99.........261..........783........2241 %C A262917 ...5....9......53......137.........853........2953........17333.......71721 %C A262917 ..10...27.....318.....1411.......18190......121507......1444558....12031011 %C A262917 ..19...61....1207.....7417......152587.....1550557.....30497815...420921961 %C A262917 ..37..145....5797....51769.....2045269....33948145...1282949605.32134185721 %C A262917 ..74..435...34782...529931....42299374..1361585275.102437680622 %C A262917 .147.1253..189135..4701201...727767387.42115306149 %C A262917 .293.3593.1089701.44632313.13958567845 %H A262917 R. H. Hardin, <a href="/A262917/b262917.txt">Table of n, a(n) for n = 1..112</a> %F A262917 Empirical for column k: %F A262917 k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4) %F A262917 k=2: [order 15] %F A262917 k=3: [order 15] %F A262917 Empirical for row n: %F A262917 n=2: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) %F A262917 n=3: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3) %F A262917 n=4: [order 8] %F A262917 n=5: [order 10] %F A262917 n=6: [order 65] %e A262917 Some solutions for n=4 k=4 %e A262917 ..0..0..1..1..0....0..1..1..1..1....1..0..0..1..0....0..0..0..0..0 %e A262917 ..1..1..0..0..0....0..1..1..0..0....1..1..0..0..0....0..0..0..0..0 %e A262917 ..1..1..1..1..0....0..1..1..1..1....1..1..0..1..1....0..0..1..1..0 %e A262917 ..1..1..0..0..0....0..0..0..0..0....0..1..0..0..1....0..0..1..1..0 %e A262917 ..0..0..1..1..0....0..0..0..1..1....0..0..0..1..1....0..0..1..1..0 %Y A262917 Column 1 is A046630(n-1). %Y A262917 Column 2 is A262314(n-1). %Y A262917 Row 2 is A005578(n+1). %Y A262917 Row 3 is A262326. %K A262917 nonn,tabl %O A262917 1,3 %A A262917 _R. H. Hardin_, Oct 04 2015