A262918 Number of (4+1) X (n+1) 0..1 arrays with each row divisible by 3 and each column divisible by 7, read as a binary number with top and left being the most significant bits.
5, 9, 53, 137, 853, 2953, 17333, 71721, 394325, 1791209, 9435253, 44924617, 230950613, 1126125513, 5713545653, 28200027881, 142082597845, 705663892009, 3542422689653, 17650591452297, 88436516562773, 441384307595273
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..0..0..1..1 ..0..1..1..1..1....0..0..0..1..1....0..1..1..0..0....0..0..0..1..1 ..0..1..1..1..1....1..1..0..1..1....0..1..1..0..0....1..1..0..1..1 ..0..1..1..1..1....0..0..0..1..1....0..1..1..0..0....1..1..0..0..0 ..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....1..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A262917.
Formula
Empirical: a(n) = 7*a(n-1) + 11*a(n-2) - 147*a(n-3) + 99*a(n-4) + 777*a(n-5) - 1019*a(n-6) - 637*a(n-7) + 910*a(n-8).
Empirical g.f.: x*(5 - 26*x - 65*x^2 + 402*x^3 + 139*x^4 - 1510*x^5 + 273*x^6 + 910*x^7) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 5*x)*(1 - 7*x^2)*(1 - 13*x^2)). - Colin Barker, Jan 01 2019