cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262922 a(1)=1; for n>1, a(n) = a(n-1) + n + 2 if a(n-1) and n are coprime, otherwise a(n) = a(n-1)/gcd(a(n-1),n).

Original entry on oeis.org

1, 5, 10, 5, 1, 9, 18, 9, 1, 13, 26, 13, 1, 17, 34, 17, 1, 21, 42, 21, 1, 25, 50, 25, 1, 29, 58, 29, 1, 33, 66, 33, 1, 37, 74, 37, 1, 41, 82, 41, 1, 45, 90, 45, 1, 49, 98, 49, 1, 53, 106, 53, 1, 57, 114, 57, 1, 61, 122, 61, 1, 65, 130, 65, 1, 69, 138, 69, 1, 73, 146, 73, 1, 77, 154, 77, 1, 81, 162
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 04 2015

Keywords

Comments

This recurrence is quasi-periodic.
For some choice of starting value a(1) there exists an integer t>=1 such that a(4*t-3)=1, a(4*t-2)=4*t+1, a(4*t-1)=2*(4*t+1), a(4*t)=4*t+1. The loop is (1,x,2x,x).
For some choice of starting value a(1) there exists an integer t>=1 such that a(2*t)=2*t-1 and a(2*t-1)=2*(2*t-1). The loop is (x,2x). See also A133058.
Quasi-periodic sequences exist only for R=0,1,2 or 3 in a(n) = a(n-1) + n + R. For R=0,1,2 all starting values give a quasi-periodic sequence. The respective loop is (1,x) for R=0, (1,x,2x,2) for R=1, (1,x,2x,x) or (x,2x) for R=2. For R=3 only some starting values converge to a 6-loop (4x+2,2x+1,3x+6,x+2,2x+9,3x+17). Conjecture: For R>=4 the recurrence is not quasi-periodic.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[CoprimeQ[a[n - 1], n], a[n - 1] + n + 2, a[n - 1]/GCD[a[n - 1], n]]; Array[a, {79}] (* Michael De Vlieger, Oct 05 2015 *)
  • PARI
    A=vector(1000, i, 1); for(n=2, #A, A[n]=if(gcd(A[n-1], n)>1, A[n-1]/gcd(A[n-1], n), A[n-1]+n+2))

Formula

Maple suggests the rational o.g.f. (-x^6 - x^5 - x^3 + 6x^2 + 4x + 1)/((x + 1)(x - 1)^2(x^2 + 1)^2), which should be easy to check. - Pater Bala, Oct 04 2015