This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262924 #17 Apr 16 2017 07:09:10 %S A262924 1,1,2,2,5,10,13,25,35,57,87,134,211,306,458,684,996,1465,2129,3073, %T A262924 4411,6288,8977,12707,17913,25185,35231,49078,68228,94490,130408, %U A262924 179425,246121,336681,459239,624842,847986,1147728,1549773,2087972,2806455,3764136 %N A262924 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1) * (1 + x^(3*k-2))^(3*k-2). %C A262924 Convolution of A262948 and A262949. %H A262924 Seiichi Manyama, <a href="/A262924/b262924.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec) %H A262924 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015 %F A262924 a(n) ~ exp(3*Zeta(3)^(1/3)*n^(2/3)/2) * Zeta(3)^(1/6) / (2^(1/3) * sqrt(3*Pi) * n^(2/3)). %t A262924 nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1)*(1 + x^(3*k-2))^(3*k-2), {k, 1, nmax}], {x, 0, nmax}], x] %Y A262924 Cf. A262884, A262878, A262879, A262923, A261612, A262928, A262948, A262949. %Y A262924 Cf. A262736, A285292, A285293. %K A262924 nonn %O A262924 0,3 %A A262924 _Vaclav Kotesovec_, Oct 04 2015