This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262925 #8 Jul 30 2017 11:42:32 %S A262925 0,1,97,962,4578,14979,38995,86996,173636,318597,547333,891814, %T A262925 1391270,2092935,3052791,4336312,6019208,8188169,10941609,14390410, %U A262925 18658666,23884427,30220443,37834908,46912204,57653645,70278221,85023342,102145582,121921423 %N A262925 Sum of n consecutive fourth powers starting with n^4. %H A262925 Colin Barker, <a href="/A262925/b262925.txt">Table of n, a(n) for n = 0..1000</a> %H A262925 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A262925 a(n) = n*(-1+70*n^2-225*n^3+186*n^4)/30. %F A262925 G.f.: x*(16*x^4+241*x^3+395*x^2+91*x+1) / (x-1)^6. %e A262925 a(3) = 3^4 + 4^4 + 5^4 = 962. %t A262925 LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,97,962,4578,14979},30] (* _Harvey P. Dale_, Jul 30 2017 *) %o A262925 (PARI) vector(40, n, n--; sum(k=n, 2*n-1, k^4)) %o A262925 (PARI) concat(0, Vec(x*(16*x^4+241*x^3+395*x^2+91*x+1)/(x-1)^6 + O(x^40))) %Y A262925 Cf. A050410, A240137, A262926. %K A262925 nonn,easy %O A262925 0,3 %A A262925 _Colin Barker_, Oct 04 2015