cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262928 Expansion of Product_{k>=0} (1 + x^(3*k+2)).

This page as a plain text file.
%I A262928 #20 Nov 24 2020 02:23:14
%S A262928 1,0,1,0,0,1,0,1,1,0,1,1,0,2,1,1,2,1,1,3,1,2,3,1,3,4,2,4,4,2,5,5,3,7,
%T A262928 5,4,8,6,6,10,7,7,12,8,10,14,9,12,16,11,16,19,13,19,21,16,24,25,19,28,
%U A262928 28,23,35,32,28,40,36,34,48,42,41,55,47,49,65,55
%N A262928 Expansion of Product_{k>=0} (1 + x^(3*k+2)).
%H A262928 Vaclav Kotesovec, <a href="/A262928/b262928.txt">Table of n, a(n) for n = 0..10000</a>
%F A262928 a(n) ~ exp(sqrt(n)*Pi/3) / (2^(5/3)*sqrt(3)*n^(3/4)) * (1 - (Pi/144 + 9/(8*Pi)) / sqrt(n)). - _Vaclav Kotesovec_, Oct 04 2015, extended Jan 16 2017
%F A262928 G.f.: Sum_{k>=0} x^(k*(3*k + 1)/2) / Product_{j=1..k} (1 - x^(3*j)). - _Ilya Gutkovskiy_, Nov 24 2020
%t A262928 nmax=100; CoefficientList[Series[Product[(1+x^(3*k-1)),{k,1,nmax}],{x,0,nmax}],x]
%t A262928 nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Jan 13 2017 *)
%Y A262928 Cf. A003105, A035386, A261612.
%K A262928 nonn
%O A262928 0,14
%A A262928 _Vaclav Kotesovec_, Oct 04 2015