This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262932 #30 Sep 08 2022 08:46:14 %S A262932 1,2,3,6,7,9,14,18,19,21,27,29,31,37,38,42,47,53,54,57,58,59,62,63,74, %T A262932 81,83,87,93,94,103,106,109,111,113,114,118,126,131,133,137,139,141, %U A262932 149,159,162,166,167,171,174,177,186,189,193,197,199,203,206,217,218,222 %N A262932 Numbers k such that 7 is a square mod k. %H A262932 Alois P. Heinz, <a href="/A262932/b262932.txt">Table of n, a(n) for n = 1..20000</a> %e A262932 7^2 == 7 (mod 14), so 14 is a term. %e A262932 5^2 == 7 (mod 18) and 13^2 == 7 (mod 18), so 18 is a term. %p A262932 with(numtheory): %p A262932 a:= proc(n) option remember; local k; %p A262932 for k from 1+`if`(n=1, 0, a(n-1)) %p A262932 while mroot(7, 2, k)=FAIL do od; k %p A262932 end: %p A262932 seq(a(n), n=1..80); # _Alois P. Heinz_, Feb 24 2017 %t A262932 Join[{1}, Table[If[Reduce[x^2 == 7, Modulus->n] === False, Null, n], {n, 2, 300}]//Union] (* _Vincenzo Librandi_, Oct 05 2015 *) %o A262932 (PARI) for(n=1, 300, if (issquare(Mod(7, n)), print1(n", "))); \\ _Altug Alkan_, Oct 04 2015 %o A262932 (Magma) [n: n in [1..300] | exists(t){x : x in ResidueClassRing(n) | x^2 eq 7}]; // _Vincenzo Librandi_, Oct 05 2015 %Y A262932 Cf. A057125, A057126, A057762, A262931. %K A262932 nonn,easy %O A262932 1,2 %A A262932 _Erik Pelttari_, Oct 04 2015