cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262936 Lesser of lonely twin primes pairs with increasing distance to nearest prime.

This page as a plain text file.
%I A262936 #35 Sep 05 2021 02:33:07
%S A262936 3,5,11,29,419,521,1931,6449,10007,28349,107507,173429,569321,913637,
%T A262936 1349531,3593201,18286391,80528741,83528411,591792347,1971409091,
%U A262936 2061246347,8579208791,13861166687,15250041281,27034148369,27066034997,54125499299,315361055237
%N A262936 Lesser of lonely twin primes pairs with increasing distance to nearest prime.
%H A262936 Dmitry Petukhov, <a href="/A262936/b262936.txt">Table of n, a(n) for n = 1..40</a>
%F A262936 a(n) = p(i) if ( (p(i+1) = p(i)+2) AND (min(p(i+2)-p(i+1), p(i)-p(i-1)) > a(n-1)) ), where a(0) = 0, p(k) = prime(k) = A000040(k).
%e A262936 (3,5) is a twin primes pair, min(7-5, 3-2)=1, therefore a(1)=3.
%e A262936 (5,7) is a twin primes pair, min(11-7, 5-3)=2>1, therefore a(2)=5.
%e A262936 (11,13) is a twin primes pair, min(17-13, 11-7)=4>2, therefore a(3)=11.
%o A262936 (PARI) {m=0; q=5; s=3; t=2; forprime(p=6, 10^9, if((q-s==2) && (min(p-q, s-t)>m), m=min(p-q, s-t); print1(s, ", ") ); t=s; s=q; q=p;)}
%Y A262936 Subsequence of A001359.
%Y A262936 Cf. A035789, A262935, A347280.
%K A262936 nonn
%O A262936 1,1
%A A262936 _Dmitry Petukhov_, Oct 04 2015