cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262945 Number of ordered pairs (x,y) with x >= 0 and y >= 0 such that n - x^4 - 2*y^2 is a triangular number or a pentagonal number.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 4, 5, 2, 5, 4, 5, 7, 3, 1, 1, 4, 4, 6, 4, 1, 4, 4, 3, 5, 6, 5, 6, 4, 1, 1, 2, 5, 4, 5, 3, 3, 2, 1, 5, 4, 7, 9, 5, 4, 2, 2, 2, 5, 3, 2, 5, 2, 1, 3, 4, 3, 8, 4, 4, 5, 6, 3, 3, 3, 2, 7, 6, 1, 3, 3, 4, 7, 4, 6, 6, 7, 5, 2, 3, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 05 2015

Keywords

Comments

Conjecture: a(n) > 0 for every n = 0,1,2,..., and a(n) = 1 only for the following 55 values of n: 0, 26, 27, 32, 41, 42, 50, 65, 80, 97, 112, 122, 130, 160, 196, 227, 239, 272, 322, 371, 612, 647, 736, 967, 995, 1007, 1106, 1127, 1205, 1237, 1240, 1262, 1637, 1657, 1757, 2912, 2987, 3062, 3107, 3524, 3647, 3902, 5387, 5587, 5657, 6047, 6107, 11462, 13427, 14717, 15002, 17132, 20462, 30082, 35750.
See also A262941, A262944, A262954 and A262955 for similar conjectures.

Examples

			a(26) = 1 since 26 = 2^4 + 2*0^2 + 4*5/2.
a(32) = 1 since 32 = 0^4 + 2*4^2 + 0*1/2.
a(41) = 1 since 41 = 1^4 + 2*3^2 + p_5(4), where p_5(n) denotes the pentagonal number n*(3*n-1)/2.
a(196) = 1 since 196 = 1^4 + 2*5^2 + p_5(10).
a(3524) = 1 since 3524 = 0^4 + 2*22^2 + 71*72/2.
a(3647) = 1 since 3647 = 0^4 + 2*34^2 + p_5(30).
a(6047) = 1 since 6047 = 5^4 + 2*39^2 + p_5(40).
a(6107) = 1 since 6107 = 0^4 + 2*1^2 + 110*111/2.
a(11462) = 1 since 11462 = 9^4 + 2*5^2 + 98*99/2.
a(13427) = 1 since 13427 = 7^4 + 2*0^2 + 148*149/2.
a(14717) = 1 since 14717 = 8^4 + 2*72^2 + 22*23/2.
a(15002) = 1 since 15002 = 0^4 + 2*86^2 + 20*21/2.
a(17132) = 1 since 17132 = 3^4 + 2*30^2 + p_5(101).
a(20462) = 1 since 20462 = 0^4 + 2*26^2 + 195*196/2.
a(30082) = 1 since 30082 = 11^4 + 2*63^2 + 122*123/2.
a(35750) = 1 since 35750 = 0^4 + 2*44^2 + 252*253/2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[8n+1]]||(IntegerQ[Sqrt[24n+1]]&&Mod[Sqrt[24n+1]+1, 6]==0)
    Do[r=0;Do[If[SQ[n-x^4-2y^2],r=r+1],{x, 0, n^(1/4)},{y,0,Sqrt[(n-x^4)/2]}];Print[n, " ", r];Continue,{n,0,100}]