A262945 Number of ordered pairs (x,y) with x >= 0 and y >= 0 such that n - x^4 - 2*y^2 is a triangular number or a pentagonal number.
1, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 4, 5, 2, 5, 4, 5, 7, 3, 1, 1, 4, 4, 6, 4, 1, 4, 4, 3, 5, 6, 5, 6, 4, 1, 1, 2, 5, 4, 5, 3, 3, 2, 1, 5, 4, 7, 9, 5, 4, 2, 2, 2, 5, 3, 2, 5, 2, 1, 3, 4, 3, 8, 4, 4, 5, 6, 3, 3, 3, 2, 7, 6, 1, 3, 3, 4, 7, 4, 6, 6, 7, 5, 2, 3, 3
Offset: 0
Keywords
Examples
a(26) = 1 since 26 = 2^4 + 2*0^2 + 4*5/2. a(32) = 1 since 32 = 0^4 + 2*4^2 + 0*1/2. a(41) = 1 since 41 = 1^4 + 2*3^2 + p_5(4), where p_5(n) denotes the pentagonal number n*(3*n-1)/2. a(196) = 1 since 196 = 1^4 + 2*5^2 + p_5(10). a(3524) = 1 since 3524 = 0^4 + 2*22^2 + 71*72/2. a(3647) = 1 since 3647 = 0^4 + 2*34^2 + p_5(30). a(6047) = 1 since 6047 = 5^4 + 2*39^2 + p_5(40). a(6107) = 1 since 6107 = 0^4 + 2*1^2 + 110*111/2. a(11462) = 1 since 11462 = 9^4 + 2*5^2 + 98*99/2. a(13427) = 1 since 13427 = 7^4 + 2*0^2 + 148*149/2. a(14717) = 1 since 14717 = 8^4 + 2*72^2 + 22*23/2. a(15002) = 1 since 15002 = 0^4 + 2*86^2 + 20*21/2. a(17132) = 1 since 17132 = 3^4 + 2*30^2 + p_5(101). a(20462) = 1 since 20462 = 0^4 + 2*26^2 + 195*196/2. a(30082) = 1 since 30082 = 11^4 + 2*63^2 + 122*123/2. a(35750) = 1 since 35750 = 0^4 + 2*44^2 + 252*253/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[8n+1]]||(IntegerQ[Sqrt[24n+1]]&&Mod[Sqrt[24n+1]+1, 6]==0) Do[r=0;Do[If[SQ[n-x^4-2y^2],r=r+1],{x, 0, n^(1/4)},{y,0,Sqrt[(n-x^4)/2]}];Print[n, " ", r];Continue,{n,0,100}]
Comments