cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262952 Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-1)).

This page as a plain text file.
%I A262952 #7 Oct 05 2015 05:51:25
%S A262952 1,1,1,2,1,3,3,3,6,5,7,9,9,12,15,16,21,24,26,33,37,42,51,57,65,78,86,
%T A262952 99,115,128,146,168,187,213,243,269,306,345,383,433,487,539,607,678,
%U A262952 749,842,935,1033,1157,1279,1413,1575,1736,1916,2127,2339,2579,2853
%N A262952 Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-1)).
%H A262952 Vaclav Kotesovec, <a href="/A262952/b262952.txt">Table of n, a(n) for n = 0..1000</a>
%H A262952 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015
%F A262952 a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n/2)/3) / (2^(23/12) * sqrt(3) * n^(3/4)).
%t A262952 nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1)) * (1 + x^(3*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A262952 Cf. A000700, A262928, A262953.
%K A262952 nonn
%O A262952 0,4
%A A262952 _Vaclav Kotesovec_, Oct 05 2015