This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262953 #6 Oct 05 2015 05:51:07 %S A262953 1,2,1,1,3,4,3,4,7,7,8,11,13,15,18,21,25,31,34,38,48,56,61,72,85,95, %T A262953 109,126,142,163,186,207,237,272,301,339,389,433,482,547,612,680,764, %U A262953 851,946,1061,1177,1301,1455,1616,1779,1977,2194,2415,2670,2953,3250 %N A262953 Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-2)). %H A262953 Vaclav Kotesovec, <a href="/A262953/b262953.txt">Table of n, a(n) for n = 0..1000</a> %H A262953 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015 %F A262953 a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n/2)/3) / (2^(19/12) * sqrt(3) * n^(3/4)). %t A262953 nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1)) * (1 + x^(3*k-2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A262953 Cf. A000700, A261612, A262952. %K A262953 nonn %O A262953 0,2 %A A262953 _Vaclav Kotesovec_, Oct 05 2015