A262954 Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 has the form z^2 or 8*z^2.
1, 2, 2, 2, 2, 2, 3, 2, 1, 4, 5, 3, 1, 2, 4, 3, 3, 3, 5, 4, 2, 4, 5, 2, 3, 6, 4, 3, 4, 5, 5, 4, 3, 2, 5, 4, 7, 7, 3, 4, 3, 4, 2, 4, 6, 6, 6, 2, 2, 2, 4, 5, 9, 5, 4, 5, 2, 3, 2, 5, 5, 5, 2, 4, 5, 3, 4, 5, 4, 5, 7, 3, 3, 3, 6, 3, 4, 4, 5, 6, 3, 7, 7, 3, 4, 8, 7, 7, 1, 3, 9, 8, 6
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0^4 + 1*2/2 + 0^2. a(9) = 1 since 9 = 0^4 + 1*2/2 + 8*1^2. a(13) = 1 since 13 = 1^4 + 2*3/2 + 3^2. a(89) = 1 since 89 = 2^4 + 1*2/2 + 8*3^2. a(449) = 1 since 449 = 0^4 + 22*23/2 + 14^2. a(524) = 1 since 524 = 3^4 + 29*30/2 + 8*1^2. a(1049) = 1 since 1049 = 5^4 + 16*17/2 + 8*6^2. a(2164) = 1 since 2164 = 1^4 + 34*35/2 + 8*14^2. a(14969) = 1 since 14969 = 8^4 + 145*146/2 + 8*6^2. a(51334) = 1 since 51334 = 5^4 + 313*314/2 + 8*14^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]]||IntegerQ[Sqrt[n/8]] Do[r=0;Do[If[SQ[n-x^4-y(y+1)/2],r=r+1],{x,0,n^(1/4)},{y,1,(Sqrt[8(n-x^4)+1]-1)/2}];Print[n," ",r];Continue,{n,1,100}]
Comments