A262955 Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 is a pentagonal number (A000326) or twice a pentagonal number.
1, 2, 3, 3, 2, 3, 3, 3, 2, 1, 4, 4, 3, 2, 3, 5, 4, 3, 3, 3, 4, 5, 5, 4, 3, 5, 6, 5, 5, 3, 6, 4, 4, 4, 1, 4, 5, 7, 6, 2, 6, 3, 3, 3, 5, 8, 5, 4, 3, 5, 4, 4, 4, 5, 5, 5, 7, 4, 3, 3, 7, 3, 3, 2, 2, 8, 5, 6, 2, 3, 5, 7, 6, 2, 1, 4, 4, 3, 6, 7, 6, 3, 5, 4, 3, 2, 6, 6, 6, 4, 6, 8
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0^4 + 1*2/2 + p_5(0), where p_5(n) denotes the pentagonal number n*(3*n-1)/2. a(10) = 1 since 10 = 0^4 + 4*5/2 + p_5(0). a(35) = 1 since 35 = 1^4 + 4*5/2 + 2*p_5(3). a(75) = 1 since 75 = 2^4 + 5*6/2 + 2*p_5(4). a(134) = 1 since 134 = 2^4 + 1*2/2 + p_5(9). a(415) = 1 since 415 = 0^4 + 21*22/2 + 2*p_5(8). a(515) = 1 since 515 = 0^4 + 6*7/2 + 2*p_5(13). a(1465) = 1 since 1465 = 5^4 + 35*36/2 + p_5(12). a(2365) = 1 since 2365 = 5^4 + 8*9/2 + 2*p_5(24). a(3515) = 1 since 3515 = 5^4 + 51*52/2 + 2*p_5(23). a(4140) = 1 since 4140 = 1^4 + 90*91/2 + 2*p_5(4).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Programs
-
Mathematica
PenQ[n_]:=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1,6]==0) PQ[n_]:=PenQ[n]||PenQ[n/2] Do[r=0;Do[If[PQ[n-x^4-y(y+1)/2],r=r+1],{x,0,n^(1/4)},{y,1,(Sqrt[8(n-x^4)+1]-1)/2}];Print[n," ",r];Continue,{n,1,100}]
Comments