A262959 Positive integers that cannot be written as the sum of a fourth power, a square and a positive triangular number.
9, 34, 63, 89, 99, 139, 164, 174, 193, 204, 245, 314, 324, 399, 424, 454, 464, 489, 504, 524, 549, 714, 1049, 1089, 1149, 1174, 1439, 1504, 1539, 1639, 1714, 1799, 1814, 1919, 2164, 2239, 2313, 2374, 2414, 2439, 2764, 2789, 3079, 3319, 3414, 3669, 3774, 3814, 4019, 4114
Offset: 1
Keywords
Examples
a(1) = 9 since each of 1..8 can be written as x^4 + y^2 + z*(z+1)/2 with z > 0, but 9 cannot be represented in this way. Clearly, 1 = 0^4 + 0^2 + 1*2/2, 2 = 0^4 + 1^2 + 1*2/2, 3 = 1^4 + 1^2 + 1*2/2, 4 = 0^4 + 1^2 + 2*3/2, 5 = 1^4 + 1^2 + 2*3/2, 6 = 0^4 + 0^2 + 3*4/2, 7 = 0^4 + 1^2 + 3*4/2 and 8 = 1^3 + 1^2 + 3*4/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..500
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Programs
-
Mathematica
TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]] n=0;Do[Do[If[TQ[m-x^4-y^2],Goto[aa]],{x,0,m^(1/4)},{y,0,Sqrt[m-x^4]}]; n=n+1;Print[n," ",m];Label[aa];Continue,{m,1,5000}]
Comments