This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262963 #20 Oct 31 2015 00:35:39 %S A262963 2,14,43,238,239,698,4010,4090,4091,4094,10922,12031,12271,12283, %T A262963 174842,174847,176062,176063,977578,977579,981679,981691,981931, %U A262963 981934,981935,981950,1043114,1043194,1043195,1043198,3129259,3129262,3129263,3129322,3129323,3129326,3129343 %N A262963 List of numbers n whose base-3 expansion contains only the digits 1 and 2 and whose base-4 expansion contains only the digits 2 and 3. %H A262963 Chai Wah Wu, <a href="/A262963/b262963.txt">Table of n, a(n) for n = 1..10000</a> %e A262963 43 is 1121 in base 3 and 223 in base 4; it uses the two largest digits in the two bases and is therefore a term. %e A262963 Similarly 238 is 22211 in base 3 and 3232 in base 4 so it is also a term. %o A262963 (Python) %o A262963 from gmpy2 import digits %o A262963 def f1(n): %o A262963 s = digits(n,3) %o A262963 m = len(s) %o A262963 for i in range(m): %o A262963 if s[i] == '0': %o A262963 return(int(s[:i]+'1'*(m-i),3)) %o A262963 return n %o A262963 def f2(n): %o A262963 s = digits(n,4) %o A262963 m = len(s) %o A262963 for i in range(m): %o A262963 if s[i] in ['0','1']: %o A262963 return(int(s[:i]+'2'*(m-i),4)) %o A262963 return n %o A262963 A262963_list = [] %o A262963 n = 1 %o A262963 for i in range(10**4): %o A262963 m = f2(f1(n)) %o A262963 while m != n: %o A262963 n, m = m, f2(f1(m)) %o A262963 A262963_list.append(m) %o A262963 n += 1 # _Chai Wah Wu_, Oct 30 2015 %Y A262963 Cf. A258981, A261970, A262958. %K A262963 nonn,base %O A262963 1,1 %A A262963 _Robin Powell_, Oct 05 2015