A262964 Lower triangular matrix. See comments for definition.
1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 2, 1, 0, 10, 4, 9, 0, 1, 0, 15, 10, 28, 7, 5, 1, 0, 21, 20, 69, 36, 30, 1
Offset: 1
Examples
Triangle starts and row sums are A239605: 1 = 1 1 0 = 1 1 0 1 = 2 1 0 3 0 = 4 1 0 6 1 2 = 10 1 0 10 4 9 0 = 24 1 0 15 10 28 7 5 = 66 1 0 21 20 69 36 30 1 = 178 Alternating row sums are A011782: 1 = 1 1 -0 = 1 1 -0 1 = 2 1 -0 3 -0 = 4 1 -0 6 -1 2 = 8 1 -0 10 -4 9 -0 = 16 1 -0 15 -10 28 -7 5 = 32 1 -0 21 -20 69 -36 30 -1 = 64
Crossrefs
Programs
-
Mathematica
(* To get this number triangle, look at the numbers separated by zeros in the columns *) (* coefficients (coeff) in power series can be changed *)Clear[t, n, k, i, nn, x]; Clear[x] coeff = {1, 1000000000000000000, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; mp[m_, e_] := If[e == 0, IdentityMatrix@Length@m, MatrixPower[m, e]]; nn = Length[coeff]; cc = Range[nn]*0 + 1; Monitor[ Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]; A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]]; cc = Total[ Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1, nn}]];, {i, 1, nn}], i]; cc; TableForm[A4[[All,1]]]
Comments