cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262970 Total cycle length of all iteration trajectories of all elements of random mappings from [n] to [n].

This page as a plain text file.
%I A262970 #41 Jul 20 2024 15:08:11
%S A262970 1,10,117,1648,27425,528336,11581885,284878336,7772592897,
%T A262970 233010784000,7614411069221,269412832512000,10261487793254113,
%U A262970 418636033893726208,18213563455467238125,841799936112774086656,41189866031118283907585,2127207204243268173103104
%N A262970 Total cycle length of all iteration trajectories of all elements of random mappings from [n] to [n].
%C A262970 An iteration trajectory is the directed graph obtained by iterating the mapping starting from one of the n elements until a cycle appears and consists of a tail attached to a cycle.
%H A262970 G. C. Greubel, <a href="/A262970/b262970.txt">Table of n, a(n) for n = 1..380</a>
%H A262970 P. Flajolet and A. M. Odlyzko, <a href="https://hal.inria.fr/inria-00075445">Random Mapping Statistics</a>, INRIA RR 1114, 1989.
%H A262970 Math StackExchange, <a href="http://math.stackexchange.com/questions/1463544/">Generating functions for tail length and rho-length</a>
%F A262970 E.g.f.: T/(1-T)^4, where T is the labeled tree function, average over all mappings and values asymptotic to sqrt(Pi*n/8).
%F A262970 a(n) = e^n * n * Gamma(n + 1, n) / 2. - _Peter Luschny_, Jul 20 2024
%p A262970 proc(n) 1/2*n!*add(n^q*(n + 1 - q)*(n - q)/q!, q = 0 .. n - 1) end proc
%t A262970 Table[n!/2 Sum[n^q (n + 1 - q) (n - q)/q!, {q, 0, n - 1}], {n, 21}] (* _Michael De Vlieger_, Oct 06 2015 *)
%t A262970 a[n_] := E^n n Gamma[n + 1, n] / 2;
%t A262970 Table[a[n], {n, 1, 19}]  (* _Peter Luschny_, Jul 20 2024 *)
%o A262970 (PARI) a(n) = n! * sum(q=0, n-1, n^q*(n+1-q)*(n-q)/q!)/2;
%Y A262970 Cf. A036360.
%K A262970 nonn
%O A262970 1,2
%A A262970 _Marko Riedel_, Oct 05 2015