cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262973 Total tail length of all iteration trajectories of all elements of random mappings from [n] to [n].

This page as a plain text file.
%I A262973 #35 Jan 04 2021 19:28:46
%S A262973 0,2,36,624,11800,248400,5817084,150660608,4285808496,133010784000,
%T A262973 4475982692500,162419627132928,6324111407554824,263067938335913984,
%U A262973 11645155099754347500,546652030933421260800,27126781579050558916576,1418971858887930496745472
%N A262973 Total tail length of all iteration trajectories of all elements of random mappings from [n] to [n].
%C A262973 An iteration trajectory is the directed graph obtained by iterating the mapping starting from one of the n elements until a cycle appears and consists of a tail attached to a cycle.
%H A262973 G. C. Greubel, <a href="/A262973/b262973.txt">Table of n, a(n) for n = 1..380</a>
%H A262973 P. Flajolet and A. M. Odlyzko, <a href="https://hal.inria.fr/inria-00075445">Random Mapping Statistics</a>, INRIA RR 1114, 1989.
%H A262973 Math StackExchange, <a href="http://math.stackexchange.com/questions/1463544/">Generating functions for tail length and rho-length</a>
%F A262973 E.g.f.: T^2/(1-T)^4 where T is the labeled tree function, average over all mappings and values is asymptotic to sqrt(Pi*n/8).
%p A262973 proc(n) 1/2*n!*add(n^q*(n - q)*(n - 1 - q)/q!, q = 0 .. n - 2) end proc
%t A262973 Table[n!/2 Sum[n^q (n - q) (n - 1 - q)/q!, {q, 0, n - 2}], {n, 21}] (* _Michael De Vlieger_, Oct 06 2015 *)
%K A262973 nonn
%O A262973 1,2
%A A262973 _Marko Riedel_, Oct 05 2015