cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263003 Partition array for the products of the hook lengths of Ferrers (Young) diagrams corresponding to the partitions of n, written in Abramowitz-Stegun order.

This page as a plain text file.
%I A263003 #36 May 08 2018 15:11:56
%S A263003 1,1,2,2,6,3,6,24,8,12,8,24,120,30,24,20,24,30,120,720,144,80,144,72,
%T A263003 45,144,72,80,144,720,5040,840,360,360,336,144,240,240,252,144,360,
%U A263003 336,360,840,5040,40320,5760,2016,1440,2880,1920,630,576,720,960,1152,448,720,576,2880,1152,630,1440,1920,2016,5760,40320,362880,45360,13440,7560,8640,12960,3456,2240,4320,3024,2160,8640,6480,1920,1680,1680,2160,4320,5184,1920,3024,2240,8640,6480,3456,7560,12960,13440,45360,362880
%N A263003 Partition array for the products of the hook lengths of Ferrers (Young) diagrams corresponding to the partitions of n, written in Abramowitz-Stegun order.
%C A263003 The sequence of row lengths is A000041: [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...] (partition numbers p(n)).
%C A263003 For the ordering of this tabf array a(n,k) see Abramowitz-Stegun (A-St) ref. pp. 831-2.
%C A263003 This is the array n!/A117506(n,k).
%C A263003 For rows 1..15 of this irregular triangle see the W. Lang link.
%C A263003 The row sums give A263004.
%C A263003 The formula given below is the one obtained from the version given, e.g., in Wybourne's book for A117506(n, k). See also the Glass-Ng reference, Theorem 1, p. 701, which gives the same formula, after rewriting using also a Vandermonde determinant.
%C A263003 In A. Young's third paper (Q.S.A. III, see A117506), Theorem V on p. 266, CP p. 363, f/n! (the present 1/a(n,k)) appears in the decomposition of 1 for each n, that is Sum_{k = 1..p(n)} 1/a(n,k) Sum_{j=1..d(n,k)} Y'(n,k,j) = 1, with d(n,k) = A117506(n,k), and the Young operators Y' for the standard tableaux for the k-th partition of n in A-St order.
%C A263003 a(n,k) also appears as normalization to obtain the idempotents NP/a(n,k). See A. Young, Q.S.A. II, p. 366, CP p. 97: NP = (1/a(n,k)) (NP)^2 for each Young tableau of the shape given by the k-th partition of n in A-St order.
%D A263003 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
%D A263003 B. Wybourne, Symmetry principles and atomic spectroscopy, Wiley, New York, 1970, p. 9.
%H A263003 Alois P. Heinz, <a href="/A263003/b263003.txt">Rows n = 0..30, flattened</a>
%H A263003 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A263003 Kenneth Glass and Chi-Keung Ng, <a href="http://www.jstor.org/stable/4145043?seq=1#page_scan_tab_contents">A Simple Proof of the Hook Length Formula</a>, Am. Math. Monthly 111 (2004) 700 - 704.
%H A263003 Wolfdieter Lang, <a href="/A263003/a263003.pdf">Rows 1..15.</a>
%F A263003 a(n,k) = Product_{i=1..m(n,k)} (x_i)!/Det(x_i^(m(n,k) - j)) with the Vandermonde determinant for the variables x_i := lambda(n,k)_i + m(n,k) - i, for i, j = 1..m(n,k), where m(n,k) is the number of parts of the k-th partition of n denoted by lambda(n,k), in the A-St order (see above). Lambda(n,k)_i stands for the i-th part of the partition lambda(n,k), sorted in nonincreasing order (this is the reverse of the A-St notation for a partition).
%e A263003 The first rows of this irregular triangle are:
%e A263003 n\k   1    2    3    4    5   6    7   8   9   10   11
%e A263003 0:    1
%e A263003 1:    1
%e A263003 2:    2    2
%e A263003 3:    6    3    6
%e A263003 4:   24    8   12    8   24
%e A263003 5:  120   30   24   20   24  30  120
%e A263003 6:  720  144   80  144   72  45  144  72  80  144  720
%e A263003 ...
%e A263003 Note that the rows are in general not symmetric.
%e A263003 See the W. Lang link for rows n = 1..15.
%e A263003 a(6,6) is related to the (self-conjugate) partition (1, 2, 3) of n = 6, taken in reverse order (3, 2, 1) with the Ferrers (or Young) diagram
%e A263003    _ _ _
%e A263003   |_|_|_| and the hook length numbers   5  3  1 ...
%e A263003   |_|_|                                 3  1
%e A263003   |_|                                   1
%e A263003 The product gives 5*3*1*3*1*1 = 45 = a(6,6).
%p A263003 h:= l-> (n-> mul(mul(1+l[i]-j+add(`if`(l[k]>=j, 1, 0),
%p A263003              k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
%p A263003 g:= (n, i, l)->`if`(n=0 or i=1, [h([l[], 1$n])],
%p A263003                `if`(i<1, [], [g(n, i-1, l)[],
%p A263003                `if`(i>n, [], g(n-i, i, [l[], i]))[]])):
%p A263003 T:= n-> g(n$2, [])[]:
%p A263003 seq(T(n), n=0..10);  # _Alois P. Heinz_, Nov 05 2015
%Y A263003 Cf. A117506, A263004.
%K A263003 nonn,tabf,look
%O A263003 0,3
%A A263003 _Wolfdieter Lang_, Oct 09 2015
%E A263003 Row n=0 prepended by _Alois P. Heinz_, Nov 05 2015