cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263005 Dimensions of the simple Lie algebras over complex numbers (with repetitions), sorted nondecreasingly.

This page as a plain text file.
%I A263005 #12 Oct 26 2015 04:17:03
%S A263005 3,8,10,14,15,21,21,24,28,35,36,36,45,48,55,55,57,63,66,78,78,78,80,
%T A263005 91,99,105,105,120,120,133,136,136,143,153,168,171,171,190,195,210,
%U A263005 210,224,231,248,253,253,255,276,288,300,300
%N A263005 Dimensions of the simple Lie algebras over complex numbers (with repetitions), sorted nondecreasingly.
%C A263005 This sequence gives the dimensions of the (compact) simple Lie algebras A_l, l >= 1, B_l, l >= 2, C_l >= 3, D_l, l >= 4, E_6, E_7, E_8, F_4 and G_2 which are l*(l+2), l*(2*l + 1), l*(2*l + 1), l*(2*l - 1), 78, 133, 248, 52 and 14, respectively. These are also the dimensions of the adjoint representations of these Lie algebras. For the l-ranges see the Humphreys reference, p. 58, and for the dimensions, e.g., the Samelson link, Theorem A, p. 74.
%C A263005 The dimension duplications occur for the B_l and C_l series for l >= 3.
%D A263005 E. Cartan, Sur la structure des groupes de transformation finis et continus. Thèse Paris 1894. Oeuvres Complètes, I,1, pp. 137-287, Paris 1952.
%D A263005 J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1972.
%H A263005 W. Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen, Mathematische Ann. I: 31 (1888) 252-290, II: 33 (1889) 1-48, III: 34 (1889) 57-122, IV: 36 (1890) 161-189: <a href="https://eudml.org/doc/157352">I</a>, <a href="https://eudml.org/doc/157397">II</a>, <a href="https://eudml.org/doc/157434">III</a>, <a href="https://eudml.org/doc/157490">IV</a>.
%H A263005 Hans Samelson, <a href="http://www.math.cornell.edu/~hatcher/Other/Samelson-LieAlg.pdf">Notes on Lie Algebras</a>.
%Y A263005 Cf. A104599, A121214, A121732, A121736, A121737, A121738, A121739, A121741.
%K A263005 nonn,easy
%O A263005 1,1
%A A263005 _Wolfdieter Lang_, Oct 23 2015