cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263006 First member R0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 18, 1, 4, 2, 1, 3, 7, 5, 3, 70, 1, 1, 1, 6, 3, 2, 32, 1, 3, 4, 23, 7, 9, 182, 11, 2, 1, 5, 99, 1, 29718, 1, 8, 4, 2, 13, 5, 1, 1068, 43, 39, 5, 1, 9, 3, 378, 51, 500, 1, 5, 45, 151, 1, 5604, 1, 10, 5, 2, 4005, 5, 8890182, 1, 7, 3, 776, 16, 35, 6, 277
Offset: 1

Views

Author

Wolfdieter Lang, Oct 28 2015

Keywords

Comments

The 1-happy numbers B(n)*C(n) are given in A007969(n) (called rectangular numbers in the Conway paper). B(n) = A191854(n), C(n) = A191855(n). Here the corresponding smallest positive numbers satisfying C(n)*S0(n)^2 - B(n)*R0(n)^2 = +1, n >= 1, are given as R0(n) = a(n) and S0(n) = A263007(n).
For a proof of Conway's happy number factorization theorem see the W. Lang link under A007970.
In the W. Lang link given in A007969 the first C(n), B(n), S0(n), R0(n) numbers are given in the Table for d(n) = A007969(n), n >= 1.
In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = R0(n) numbers appear for the t = 1 rows in column v.

Examples

			n = 6: 1-happy number A007969(6) = 13 = 1*13 = A191854(6)*A191855(6). 13*A263007(6)^2 - 1*a(6)^2 = 13*5^2 - 1*18^2 = +1. This is the smallest positive solution for (B, C) = (1, 13).
		

Crossrefs

Formula

A191855(n)*A263007(n)^2 - A191854(n)*a(n)^2 = +1, and a(n) with A263007(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)).