cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263010 Exceptional odd numbers D that do not admit a solution to the Pell equation X^2 - D Y^2 = +2.

Original entry on oeis.org

791, 799, 943, 1271, 1351, 1631, 1751, 1967, 2159, 2303, 2359, 2567, 3143, 3199, 3503, 3703, 3983, 4063, 4439, 4471, 4559, 4607, 4711, 5047, 5183, 5207, 5359, 5663, 5911, 5983, 6511, 6671, 6839, 7063, 7231, 7663, 7871, 8183, 8407, 8711, 9143, 9271, 9751, 9863, 10183, 10367
Offset: 1

Views

Author

Wolfdieter Lang, Nov 10 2015

Keywords

Comments

These are the odd numbers 7 (mod 8), not a square, that have in the composite case no prime factors 3 or 5 (mod 8), and do not represent +2 by the indefinite binary quadratic form X^2 - D*Y^2 (with discriminant 4*D > 0).
The numbers D which admit solutions of the Pell equation X^2 - D Y^2 = +2 are given by A261246.
Necessary conditions for nonsquare odd D were shown there to be D == 7 (mod 8), without prime factors 3 or 5 (mod 8) in the composite case. Thus only prime factors +1 (mod 8) and -1 (mod 8) can appear, and the number of the latter is odd. It has been conjectured that all such numbers D appear in A261246, but this conjecture is false as the present sequence shows.
All entries seem to be composite. The first numbers are 791 = 7*113, 799 = 17*47, 943 = 23*41, 1271 = 31*41, 1351 = 7*193, 1631 = 7*233, ...
For counterexamples to the conjecture in A261246 for even D see A264352.

Crossrefs